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Abstract--Propagation of one-dimensional disturbances of solid concentration in liquid-solid and 
gas-solid fluidized beds of magnetic particles in an external magnetic field is considered. Linear 
disturbances are analysed and the criteria of magnetic stabilization of liquid-solid and gas-solid fluidized 
beds are derived. Propagation of non-linear long concentration waves is analysed. Burgers equation is 
shown to describe the propagation of long waves in a fluidized bed of magnetic particles. Formation of 
domains with a sharp change in solid concentration ("shock" fronts) is analysed. The structure of the 
shock front (in particular the thickness of the front) is found to depend on the magnetic parameters of 
the solid particles. The obtained results can be used to explain the mechanism of supression of bubble 
formation in magnetically stabilized fluidized beds. 
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I N T R O D U C T I O N  

The first fundamental theoretical study of the problem of magnetic stabilization of a uniform 
fluidized bed of magnetizable particles has been given by Rosensweig (1979) (see also the 
monograph by Rosensweig 1985). Propagation of linear waves in a gas-solid fluidized bed of 
magnetic particles in an external magnetic field has been considered and the criteria of magnetic 
stabilization have been obtained. Later the proposed model was generalized by Rosensweig & 
Cyprios (1991) for liquid-solid fluidized beds and the criteria of linear stability for systems of 
magnetizable particles in a neutral fluid as well as for systems of neutral particles in a magnetic 
fluid have been derived. 

Since the effect of stabilization is due to the interaction between magnetizable particles, 
some ideas proposed by Foscolo et al. (1985), for the description of wave phenomena in a 
fluidized bed of interacting particles, can be used to understand the mechanism of magnetic 
stabilization. 

The linear theory by Rosensweig requires further development in order to describe the detailed 
structure of the propagating linear concentration disturbances. 

Even more interesting a problem is to develop Rosensweig's model in order to analyse 
the propagation of non-linear disturbances of solid concentration in a fiuidized bed of 
magnetic particles. The basic purpose in the analysis of non-linear waves is to describe the 
formation of concentration discontinuities (concentration "shock" waves) and fronts with 
a sharp change of solid concentration. The mechanism of formation of such domains 
can be considered as a qualitative model of bubble formation, while structures of 
concentration wave fronts were found to give certain ideas on the structures of bubble 
boundaries in fluidized beds. This means that changes in the structures of wave fronts induced 
by a magnetic field can give useful information on the mechanism of magnetic stabilization of 
bubbling fluidized beds. 

tOn leave from the Institute for Problems in Mechanics, Moscow, Russia. 
~;Author to whom correspondence should be addressed. 
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BASIC EQUATIONS 

We consider the propagation of one-dimensional disturbances of solid concentration in the 
vertical direction in a fluidized bed of magnetic particles in an external magnetic field. To describe 
the motion of the fluid (gas) and particles, the model of dispersion, as a double continuum 
consisting of two mutually penetrating and interacting ideal fluids, is used. 

Solid particles are assumed to be spherical and to have equal diameter dp. The particle size is 
assumed to be small so that the Reynolds number Re = Udp/v <~ 1, where U is the superficial fluid 
(gas) velocity in the undisturbed (uniform) fluidized bed and v is the kinematic viscosity of the fluid 
(gas). In accordance with the above assumptions an interphase interaction is supposed to be linear 
with respect to the relative velocity of the liquid (gas) and solid phase. 

The mass conservation equations for the liquid (gas) and solid phase are as follows: 

a£ a (Euf) + - -  = 0  [1] 
at & 

a~ + o (~vp) 
a t  az = 0 [2] 

E + ~ = 1 [3] 

where E is the void fraction, ~ is the volumetric concentration of solid phase, Vr and Vp are the 
interstitial fluid (gas) velocity and the mean velocity of solid particles and z is the vertical 
coordinate. 

The momentum conservation equations for the liquid (gas) and solid phase can be written as 
follows: 

(a/3f a/)f~ = apf 
pfg t ~  7 -~- Uf OZ ) OZ pEfg + F, [41 

(aVp aI.Jp '~ app 
PPO~t--~- -t- V'-~ ) -- ~ lOP ~g - Fl + fm [51 

where Pr and pp are the fluid and solid densities, respectively, Pc is the fluid pressure, pp is the effective 
pressure of the solid phase, FI is the interphase interaction force, fm is the magnetic force and Pp 
is the effective pressure in the pseudogas of the solid particles. 

Closure of these equations can be achieved by constitutive assumptions for the interaction force 
F~, magnetic force fm and effective pressure pp. 

Assuming that the solid particles are small so that Re ,~ 1, the interphase interaction force can 
be written in the usual form 

Fi = • ~ + 18 e~(E)u [6] 

where 

U = Uf-- Up 

is the relative velocity of fluid and particles. Following Rosensweig (1979, 1985), we also 
assume that the interphase interaction force does not depend on the vector of magnetization of 
solid particles. In particular this assumption is approved for spherical particles (Rosensweig 
1979, 1985). With the above assumptions the function ~(E) can be written in the Richardson-Zaki 
(1954) form 

• (E) = E-" [7] 

where n = 2.8. 
Now we give the constitutive relationship for the magnetic force. Following Rosensweig 

(1979, 1985) we assume that: (a) effects of magnetostriction can be neglected; (b) the solid material 
is magnetically soft so that hysteresis phenomena can be neglected as well. In accordance with 
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Rosensweig (1979, 1985) and Cowley & Rosensweig (1967), the magnetic force can be represented 
in the Kelvin form 

fm= ~aMp(Hp) 0Hp [81 

where/~0 is the magnetic permeability of the vacuum, Hp is the average local value of the magnetic 
field strength in the solid phase and Mp(Hp) is the magnetization of the solid material. 

The general form of Mp(Hp) with the above assumptions is given in figure 1 where Ms 
and Hs are the magnetization and the field strength of the magnetic saturation of the solid 
material. 

It is also supposed here that the magnetic field strength is not very high so that we can neglect 
the formation of vertical "strings" of solid particles. The deep analysis of this phenomenon has 
been recently given by Zimmel et al. (1991), although some earlier publications dedicated to this 
subject can be pointed out as well. 

The above assumptions actually mean that constitutive relationships can be written in the form 
[6]-[8] so that the consideration given below is framed by Rosensweig's model of the magnetically 
stabilized fluidized beds. 

The hydrodynamic equations [1]-[5] and the constitutive relationships [6]-[8] should be 
considered together with the equations of magnetic field. While the magnetic field applied to the 
bed of particles is uniform, the bed magnetization and the magnetic field are related to the 
corresponding phase parameters as follows (Rosensweig 1991): 

H + M=Bo/P.o, M=Egf+o~gp, H=eHf+~Hp [9a] 

Mf = zr(Hr)Hr, Mp = Xp(Hp)Hp, M = zH [9b] 

where Hf is the average local strength of the magnetic field in the fluid phase, Mf(Hr) is the 
magnetization of fluid, Zp and Zr are the chord magnetic susceptibilities of the phases; the 
parameters without a subscript denote the corresponding values for the mixture. The relationship 
between susceptibilities is given by the generalization of the Clausius-Mosotti formula following 
from the mean-field theory (see Landauer 1978) in the form 

X - Xt Zp -- Zr 
= ~  [10] 

Z + 2Zf + 3 •p + 2Zf + 3 

a .  Ms 

H s 

Hp 

Figure 1. The general form of magnetization as a function 
of the magnetic field strength (the subscript "s" corresponds 

to the magnetic saturation). 

De 

0.5 

o~ 

Figure 2. The general form of the function F(a). 
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Below we consider the case when only particles are magnetizable, not fluid, so that Xr = Mr = 0. 
In this case, from [9] and [10] follows the equation connecting the magnetic parameters of the solid 
phase Hp and Mp with the solid concentration ~ in the form 

1 + 2= B0 [1 l]  Hp + - - g - -  Mp= ° 

When the solid material is magnetically saturated (Hp > Hs) so that M = Ms, the last equation gives 
the following relationship between the gradients of solid concentration and magnetic field: 

aHp 2 c~= [12] - - 

so that the magnetic force becomes 

2 2 ~o~ fm= -WoMs°e z [1:3] 

To close the system [1]-[5], it is necessary to add constitutive relationships and/or differential 
equations for the effective pressure of  the solid phase pp. Some simple constitutive relationships 
and estimations for pp will be given in the following sections of  this paper. 

We now introduce the dimensionless variables 

• v p ( : )  
Z* = L ,  t* = U t ,  v~' = U,  v o - -~ u* = [14a] 

= - -  POBoH p poMp p * =  Pf * PP * [14b] 
pfU-----~, pp ppU2 , H p =  , M * =  Bo 

where L is the linear scale of  disturbance. 
Taking into account the constitutive relationships, the dimensionless mass, momentum conser- 

vation and magnetic field equations can be reduced to (the superscript * is henceforth omitted) 

E t "l- (E/)f)z = 0 [1 5] 

~t + (~Vp)z = 0 [ 16] 

(vf), + vr(vf)z = - (Pr): + Fr[ - 1 - De-  l s:ae - t q~ (¢)u] [17] 

(Vp), + Vp(Vp)~ = - De(pr)~ - ~ -I(pp): + F r [ -  1 + xq~(e)u - mMp(Hp) (Hp) : ]  [18] 

The magnetic field strength as a function of g can be found from [9]-[10] (or [11] for the saturated 
bed). In [15]-[18] the density (De) and Froude (Fr) numbers, and other dimensionless groups, are 
given by 

De = P_sr, Fr = g L  18pfv__ U Pr L 1 1 B20 
pp U --'-~' ~¢ = ppgd~ = 18 Pp dp Re F r '  m = #oPpg L -  [19] 

Following Kurdyumov & Sergeev (1987) and Sergeev (1988), from the equations of mass 
conservation with the assumption that the two-phase flow is undisturbed as z--, oo we find the 
following relationship between the relative velocity, the velocity of solid phase and the voidage: 

1 - vp 
u = [201 

E 

To determine the parameters of the steady state we assume 

= % = c o n s t ,  , =e0 = 1 - % ,  V f - ~ - ' £ O  I , Vp=0 

Hp = Hp0 = const, pp =Pp0 = const [21] 

The equation for the uniform steady voidage 60 is found from [17] and [18] to be 

1 - D e  = x ¢ ( 6 o )  ( D e  < 1) [22] 
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where 

4'(0 = E-2~(E) = E-~-2 

Obviously the magnetic field does not affect the uniform steady void fraction. 

[231 

P R O P A G A T I O N  O F  L I N E A R  C O N C E N T R A T I O N  D I S T U R B A N C E S  

In this section, following Rosensweig (1979, 1985) we neglect the particle pressure term pp. It 
should be noted that the definitive criteria for the magnetic stabilization of fluidized beds can be 
obtained using the simplest constitutive relationship pp = 0, while the detailed analysis of the 
effective solid pressure in magnetic systems requires considerable development of the theory of 
microscale motion in the solid phase. 

We linearize [15]-[18] in the vicinity of the 
disturbances 

ct = ~0+ r/, vr= Eol +v~, 

so that 

uniform steady state [21] introducing small 

/)p : V / , H = Hp0 + H l [24] 

n, v~, v',  H' ~ 1 [251 

It should be noted that the linearized dimensionless magnetic force fro = -mFrMp(Hp)(Hp):  in 
[18] reduces to 

2 /~0M~0 [26] 
fm = -- ~/z; ~ -- 3 ppU2[1 +½(1 + 2~o)~pO] 

where Mpo = Mp(Hpo). Here we introduce the tangent susceptibility of the solid material 

dMp dZp . 
XP= drip = Z p + H p ~ - ~ p  ' XP°=~p(HP°) [271 

The linearized equations for the system [15]-[18] can be reduced to the following equations for 
the disturbances of solid concentration (voidage) and the velocities of liquid (gas) and solid phases: 

rt, + Eolrt~ - Eo(V~): = 0,  ,t, + ~o(V~)+ = 0 [28] 

(v~),-  DeCCv~), + % '  (v~)z) + xFr(~boV~ + ~b~t/) + ?t/z = 0 [291 

where 

d e )  [30] 

From [28] and [29] it follows the equation for the disturbance of solid concentration (voidage) 
t / in  the form 

where 

E ~ ÷: (E0 + De~0) (n + 2)~0 
= , Co = _  [32] 

x Fr E0 

We are reminded here that for the Richardson-Zaki correlation, n = 2.8. It will be noted in the 
next section of  this article that Co is the velocity of kinematic (long) concentration wave at the 
parameters of the uniform steady state. The characteristic velocities of the higher order c~ and c2 
are of  the form 

Cl,2 = Eo + Deao - ET-o + Y + E--~-(~°'°~Y - 1) [33] 
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F igure  3. The  concen t ra t ion  0t+ cor respond ing  to the maxi-  
m u m  of F(ct) as a function of density ratio De. 
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Figure 4. a+ as a function of magnetic susceptibility. 

Since for any values of parameters 

c l > 0 ,  c2<0 [34] 

the steady state of a fluidized bed is linearly stable while c~ > Co (see, for example, Witham 1974). 
Incorporating [34] and [35] the stability criterion becomes 

~0((n + 2)(E0 + Decto) + De) 2 + DeEo 
y > E03(Eo + Dear0) [35] 

In order to analyse the stability criterion [35] in dependence on the physical parameters of phases 
and the magnetic field we note that the gas velocity U in the expression for the dimensionless 
parameter y cannot be given independently on the steady voidage E0. The correlation between the 
superficial gas velocity U, the void fraction £0 and the parameters of the phases in the case of a 
small Reynolds number based on the solid particle size follows from the steady state momentum 
equations in the form 

U = gd~ (pp - -  pr)E g + 2 [36] 
18dry 

The resulting stability criterion becomes: 

N > F ( ~ ,  De, ~0) [37] 

where 

F(~t, De, ~) = E"-l(1 + ~t){--(n +2)2(1 -- De)or2 + (n +2)[n +2(1 + De)]~t +De} [38] 

The dimensionless parameter introduced in [37] 

N = 18~q/-#°prvMp(H~°) [39] 
gd2px/~v(pp -- pf) 

depends only on the magnetic properties, the size of solid particles and the densities of both phases. 
The function F(~,) has the form represented in figure 2. At ~t = 0 F = De. The function F(at) has 
a maximum Fm at ~t = ~t+( x, De) repersented in figures 3 and 4 as a function of De and X, 
respectively (it should be noted that the values of De close to 1.0 do not have too much sense in 
fluidized beds). For gas-solid fluidized beds (De = 0) from the equation ~F/~ot = 0 it follows: 

1 
~+ -- 2~(n + 2) {~/ (n + 1) 2 + 4~(1 + ,~) + 2~ - n - 1} [401 
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Figure 5. Neutral curves at De = 0. Lower branches corre- 
spond to =t~), upper branches to =c2). 
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Figure 6. Neutral  curves at De = 0.4. 

For magnetically saturated gas-solid beds (~--,0) yields 

1 
~+ = - -  [41] 

n + l  

so that ¢+ --- 0.267 while the Richardson-Zaki drag law is used (n = 2.8). 
For magnetically saturated liquid-solid fluidized beds the value of =+ can be found from the 

equation 

n + 2 (n q- 2) 2 Jr- (n + 5)De 
at2 (n + 1)(1 - De) ct+ + (n + 2)2(n + 1)(1 - De) = 0 [42] 

When the function F(0t) is incorporated, the stability criterion [37] gives the neutral curves 
represented in the (at, N)-plane in figures 5 and 6 for De = 0 and De = 0.4, respectively. 

The following results can be immediately deduced from the form of the neutral curves. 
(1) The uniform state o fa  fluidized bed can be magnetically stabilized in the whole range of  solid 

concentration (and, respectively, the fluid velocity) by a relatively strong magnetic field such that 
N > N+(~, De), where 

N+ = max F (=). 

The value of N+ as a function of De and ;~ is represented in figures 7 and 8, respectively. 
(2) While D e < N  < N + ,  stabilization occurs in the following two intervals of  solid 

concentration: 

0 <~ ~ < ~°)(N, ;~, De)  and ~ > =c2)(N, ;~, De)  [43] 

2oy 
10 

6 

1 

4 - ^ 0 

2 I I I 
0 0.2 0.4 0.6 

De 

Figure 7. N+ = max F(=) as a function o f  De. 
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Figure 8. N+ as a function o f  ~. 
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Figure 9. Kinematic wave velocity as a function of void 
fraction (K = 1). 
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Figure 10. Schematic representation of the propagation of 
a long concentration wave; top: ct > ~, (E < E,); bottom: 

< ~t, (~ > E,). r/0, initial amplitude; r/*, amplitude of the 
concentration disturbance; &, thickness of the wave front. 
. . . . .  Shock formation of neutral particles in a fluidized 

bed. 

The critical concentrations ct (~) and ~(2) are given, respectively, by the lower and upper branches 
of  the neutral curves (see figures 5 and 6; the black points correspond to 
ct = ct °) = ~(2)= ~t+, N = N÷). The first interval in [43] corresponds to the relatively diluted 
two-phase dispersion, while the second corresponds to the dense fluidized bed. However, we must 
underline, that the maximum solid concentration in a fluidized bed is ct = ~tmf- 0.63 so that the 
second interval should be replaced by ~t,,f > ~ > ~(2). This gives the following additional condition 
for the magnetic stabilization of a dense fluidized bed: N > N , ( D e ,  ~), where N ,  = F(%r,  De, ~). 
Incorporating n = 2.8 and ~mf ~ 0.63, the last condition can be written as 

N > N ,  = 0.92(1 + 0.63~)(1 + 3.12De) [44] 

The concentration ~(2) can be related to the minimum bubbling point. Incorporating [36] we now 
obtain, from [43], two ranges of  fluid velocity: Umf < U < Umb, where Utah = U(E(2)), E (2) = 1 -~(2), 
and U > U (l), both providing magnetic stabilization of the uniform state of  a fluidized bed. 

(3) In the case of  a relatively weak magnetic field such that 0 ~< N < De, stabilization of  a diluted 
liquid-solid suspension is impossible. Since N ,  > De, we can easily conclude that a magnetic 
stabilization of  a dense fluidized bed cannot be achieved in this range of N either. 

While De ~< N < N+, N > N , ,  for ~0) < at < ct (2) propagation of  disturbances in the form of weak 
concentration shocks is possible (Witham 1974). The obtained results mean that the magnetic field 
obstructs formation of the concentration discontinuities, hence the magnetic field increases the 
ranges of  parameters corresponding to the uniform fluidization. 

We now analyse the propagation of  the linear concentration wave (such analysis can be based 
on the problem of  a signal propagation as well as on the Cauchy problem, see Witham 1974). From 
[31], the inequalities [34] and the appropriate boundary and initial conditions it follows (Witham 
1974) that in the very first moments after the formation of  disturbance (or not far from the source 
of  a disturbance), the wave front propagating with speed c~ appears. The dimensionless scale of  
damping of  this front is c~/(xFr) where x and Fr are given by [19]. Hence, the characteristic 
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damping time (rFr) -~ does not depend on the magnetic field strength or the magnetic properties 
of the solid phase. In the initial period the linear scale of damping of disturbances is decreasing 
with the Reynolds number based on the particle size. 

Now we consider the case of high magnetization of solid particles such that 

~M~o >> Pv U2 [45] 

In this case the characteristic velocities Cl.2 can be approximately written as 

The dimensional expression for the initial speed of the wave front is as follows: 

e o ~ M ~  

cl (ppe0 + pf%)x/3 + (1 + 2a0)~0 
[47] 

where Mp0 = Mp(Hp0), Hp0 is the solution of [11]. In the case under consideration the propagation 
speed is proportional to the magnetization of solids. The linear scale of damping is given by 

2 3 dp £o ~ ~toMpo 

18pfv(ppe o q- pf%)43 -k (1 + 2%)~0 
[48] 

When disturbances propagating with the speed c~ damp, the main role in a wave propagation 
process is played by disturbances propagating with the speed Co which do not depend on the 
magnetic properties. The equation of linear wave propagating with the speed Co is of the form 

~/t + c0~h = (rFr)-)Q(%, V)~/z~ [49] 

While [45] is valid, the function Q(%, v) can be written as follows: 

~'~oe~ ~o2(n + 2) 
Q = (% + De%) 2 e~ [50] 

The RHS of [49] is responsible for diffusive effects due to the magnetic field. More detailed analysis 
of such effects is given below. The RHS of [49] can be neglected when r F r  >> 1 (for example, in 
the case of small Reynolds numbers). In this case the magnetic field and the magnetic properties 
of the solid phase do not effect the linear concentration wave propagating with the speed co without 
damping. 

LONG CONCENTRATION WAVES 

We start with the dimensionless combined momentum equation following from [17] and [18] in 
the form 

Fr-l[(vp), + V p ( V p )  z - De((vf)t + vf(vr)z) + ~t- i(pp)~)] 

= - (1 - De) + re - '~ (E) (v f -  Vp) + mMp(Hp)(Hp). [51] 

Now we assume that the characteristic wavelength L is large such that 

Fr(1 -- De) = gL(p__p-- pf) >~ 1 [52] 
pp U 2 

From the momentum equations in the steady state it follows r = O(1). 
Since the effective pressure of the solid phase pp = O(ppU 2) (see, for example, Nigmatulin 1978), 

the left hand side of [51] can be neglected for long waves (i.e. while Fr(1 - De) ~ 1) irrespectively 
to a form of the equation of state of the solid phase. 
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Below we assume that the magnetic field is strong such that Hvo > Hs so that the solid material 
is magnetically saturated and M v = Ms = const. Now the field gradient can be related to the 
concentration gradient in accordance with [12], so that [51] can be written as 

(1 - v.)O(E) + ~rrE~ = K [531 

where 

K = Pp(Po - pf)d~ 
18p~vU 

and the parameter 7, defined by [26], for the saturated bed is 

2u~Ms 
7 = 3p~U 

[54] 

[55] 

Incorporating [53] into the mass conservation equation for the solid phase [16] gives the following 
equation of  propagation of  a non-linear long concentration (voidage) wave: 

& & 7 0 [1 - e &'~ 
+ c(e) ~ b - ~  J = 0 [56] --Ot Oz x Fr Oz -~z 

Equation [56] is actually the Burgers equation with the non-linear diffusive term. Here c(e) is the 
speed of  kinematic concentration wave found by Sergeev (1985) as 

c = 1 + Ke"+~[n + 2 - ( n  +3)e]  [57] 

It should be noted that c(E) does not depend on the magnetic properties. The characteristic speed 
c as a function of void fraction e is represented in figure 9 at K = 1. Here e ,  corresponds to the 
maximum of  c(e). From [57] we immediately find: 

n + l  2 
e , = - -  ~ , -  [58] 

n + 3 '  n + 3  

For the Richardson-Zaki correlation (n = 2.8) from [58] it follows that e ,  ~-0.655, ~ ,  ~-0.345. 
Now we consider finite small-amplitude waves. Introducing the concentration (voidage) disturb- 

ance q of  the uniform state so that the solid concentration and the void fraction are 

= ~0 + r/, e = e0 - ~/ [59] 

we linearize the last term in [56] taking into account that rh ,~ ~ for long waves. 
To analyse an effect of  magnetic properties and the magnetic field on the propagating 

disturbance, below we return to the dimensional variables. 
After linearization of  the diffusive term we obtain Burgers equation 

Oft Oq z 2 ~ M s d r ,  1 - eo Ozrl = 0 [60] 
Ot + Uc(e° - ~l) ~z 27pry ~b(e0) 0z 2 

Now we linearize the characteristic speed c(e) such that 

C(Eo -- r/) = Co +/~r/ [611 

where co = c(g0) is given by [32] and 

f l = _  (de)d__eE, =,0 = (n+2) [ (n+3)eo - (n+l ) ] e~  [62] 

Here/3 > 0 as e ,  < e0 < 1 (0 < ~0 < ~ *) and fl < 0 as 0 < ~o < e ,  (~,  < ~0 < 1, respectively). We note 
that for such a linearization the closest vicinity to ~, should be withdrawn from the consideration. 

We should underline here that the problem on propagation of  non-linear waves in a fluidized bed 
of  magnetic particles reduces to Burgers equation even in the simplest long-wave approximation. 
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We are reminded that propagation of long concentration waves in a fluidized bed of magnetically 
neutral particles is described by an equation of the form 

& & 
0-S + c(O ~ = 0 

(see, for example, Fanucci et al. 1979; Kluwick 1983; Liu 1983; Needham & Merkin 1983; Sergeev 
1985). 

The pattern of long wave propagation is convenient to be analysed with the help of the Cauchy 
problem. An initial concentration disturbance is imposed below in the form of an isolated pulse 
~l(z, O) = rloS(z) with the amplitude q0 and the characteristic length L (see Figure 10). Far from the 
initial disturbance the wave front is described by the following expressions (Witham 1974): 

for the "right" branch of the characteristic speed (at E0 > ¢,): 

z Co as 0 < z - Ucot < x/2rlof lULt  
q =  Uflt fl 

r/= 0 as z - Ucot > x/2rlof lULt  [63] 

for the "left" branch (at eo < e,):  

C o Z 
as x/2t lol f l lULt < z - Cot < 0 

r/ I/~1 UII31t 

r/= 0 as 0 < z - Ucot < x/2t lol f l lULt [64] 

The form of solution for the right and left branches of characteristic speed c(Q (for E > E, and 
E < E,, respectively) is schematically represented in Figure 10 in terms of solid concentration ~. 

When analysing propagation of non-linear concentration waves, the formation of domains with 
a dramatic change of solid concentration and/or solid concentration discontinuities is of key 
interest, since such domains and discontinuities can be considered as models of bubble (or slug) 
boundaries formed in a fluidized bed. The coordinate of the wavefront is determined for the right 
and left branch of characteristic speed, respectively, as 

Z = Ucot + 2x/~olfllUt [651 

For the speed of the "shock" front it yields: 

O = Uco + x/no IP lUL/ (2 t )  [66] 

It should be noted that for magnetically neutral particles [65] and [66] give the position and the 
velocity of the propagating discontinuities of the solid phase. These discontinuities given in figure 
10 by the dotted lines appear in the front and rear parts of disturbance depending whether the 
voidage E0 is higher or lower than E, (i.e. in the parts of disturbance corresponding to the 
compression or rarefaction of the solid phase; Sergeev 1985). When particles interact due to their 
magnetization the obtained formulae give the positions and speeds of wave fronts with a sharp (but 
smooth) change of solid concentration. Like in Sergeev (1985) we find that the obtained solution 
describes the formation of "shock fronts" in the two following situations (see figure 10): 

(a) In the case when E > E, (0t < 0t,)--for propagation of the compression wave of the solid 
phase. 

(b) In the case where E < ~, (a > ~t ,)~for propagation of the rarefaction wave of the solid 
phase. 

The amplitude q* and the thickness 6 of the "shock" front follow from solution of [60] with 
the proper initial and boundary conditions as 

t/* 2 ~ I L  [67] 

6 = goM~d~(1 - ,0)x/~ [68] 
27x/~Pr v4~ (E0)x/~0 I/~ I UL 3 
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The obtained formulae determine the structure of the "shock" front. In particular, [68] shows that 
the thickness of the "shock" front is proportional to the square of the magnetization of the solid 
material, growing as x/~, does not depend on the solid density but is proportional to the square 
of the diameter of solid particles. 

In conclusion we note that the formation of one-dimensional fronts analysed in the present work 
can be considered as a model for the formation of bubbles in a fluidized bed, so that the analysed 
effect of "eroding" of the front and the obtained decrease of the front amplitude with time can 
be used for a qualitative explanation of the phenomenon of suppression of bubbles in a bubbling 
fluidized bed. 
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